Designing periodic and aperiodic structures for nanophotinic devices.

330 p.

Idioma: English
eus
Publicación: 2019
Materia:
Acceso electrónico: http://hdl.handle.net/10810/35037
Ampliar información
id addi-10810-35037
recordtype addi
spelling addi-10810-350372019-08-23T01:03:09Zcom_10810_12140Tesis Doctoralescom_10810_91INVESTIGACIÓNcol_10810_12145TD-Ciencias Designing periodic and aperiodic structures for nanophotinic devices. Andonegui Artegui, Imanol García Adeva, Angel Javier Apiñaniz Fernández de Larrinoa, Estibaliz propagation of electromagnetic waves optical properties of solids optical properties propagación de ondas electromagnéticas propiedades ópticas de los sólidos propiedades magnéticas de materiales 330 p. Future all--optical networks will require to substitute the present electronic integrated circuitry by optical analogous devices that satisfy the compactness, throughput, latency and high transmission efficiency requirements in nanometer scale dimensions, outperforming the functionality of current networks. Thereby, existing dielectric materials do not confine light in a sufficiently small scale and so the physical size of these links and devices becomes unacceptable. In fact, if the optical chip does not exist in the liking of the electronic chip, photonic crystals have recently led to great hopes for a large-scale integration of optoelectronic components. Two-dimensional photonic crystals slabs obtained through periodic structuring of a planar optical waveguide, feature many characteristics which bring them closer to electronic micro-and nanostructures. This thesis explores non-trivial periodic and aperiodic dielectric nano-structures and to do so, we pose a photonic crystal design process guided by non-convex combinatory optimization techniques. In addition, this thesis proposes some novel coupling devices optimized to minimize insertion losses between silicon-on-insulator integrated waveguides and single mode optical fibers. Last but not least, this thesis explores periodic arrangements from a new perspective and reports on the first experimental evidence of topologically protected waveguiding in silicon. Furthermore, we propose and demonstrate that, in a system where topological and trivial defect modes coexist, we can probe them independently. Tuning the configuration of the interface, we observe the transition between a single topological defect and a compound trivial defect state. 2019-08-22T12:05:23Z 2019-08-22T12:05:23Z 2019-05-22 2019-05-22 info:eu-repo/semantics/doctoralThesis http://hdl.handle.net/10810/35037 513878 20104 eng eus info:eu-repo/semantics/openAccess (c)2019 IMANOL ANDONEGUI ARTEGUI
external_data_source Addi
institution Digital
collection Addi
language English
eus
topic propagation of electromagnetic waves
optical properties of solids
optical properties
propagación de ondas electromagnéticas
propiedades ópticas de los sólidos
propiedades magnéticas de materiales
spellingShingle propagation of electromagnetic waves
optical properties of solids
optical properties
propagación de ondas electromagnéticas
propiedades ópticas de los sólidos
propiedades magnéticas de materiales
Andonegui Artegui, Imanol
Designing periodic and aperiodic structures for nanophotinic devices.
description 330 p.
author_additional García Adeva, Angel Javier
author Andonegui Artegui, Imanol
title Designing periodic and aperiodic structures for nanophotinic devices.
title_short Designing periodic and aperiodic structures for nanophotinic devices.
title_full Designing periodic and aperiodic structures for nanophotinic devices.
title_fullStr Designing periodic and aperiodic structures for nanophotinic devices.
title_full_unstemmed Designing periodic and aperiodic structures for nanophotinic devices.
title_sort designing periodic and aperiodic structures for nanophotinic devices.
publishDate 2019
url http://hdl.handle.net/10810/35037
_version_ 1736137098173349888